
archive.today
webpage capture

Saved from http://www.captechconsulting.com/blogs/ios-10-imessages-sdk-creating-an-imessages-extension

no other snapshots from this url

search 28 Jul 2016 15:59:17 UTC

All snapshots from host www.captechconsulting.com

share download .zip report bug or abuse donateWebpage Screenshot

Blog
We believe there is something unique at every business that will
ignite the fuse of innovation.

Insights > Blog > iOS 10 iMessages SDK: Creating an iMessages Extension

July 25, 2016

iOS 10
iMessages SDK:
Creating an
iMessages
Extension
Written By:

WILLIAM EMMANUEL

+ SHARE

Exploring Apple Message Extensions
Of all the things announced at
WWDC 2016, iMessage app
extensions might be the most
promising for companies with a
mobile presence. These app
extensions allow developers to
add new functionality directly to
the Messages app in iOS 10.
Users will soon be able to
transfer money, play games,
send videos, or make restaurant
reservations all within the
context of their existing
iMessage conversations.

This is a huge win for both users and mobile companies. Users will be able to
consume apps and services in the context of their conversations, while companies
are given a new surface to engage iOS users. Companies can meet their customers
at a personal level--right in their messages and group chats, while also respecting
user chat privacy. These iMessage extensions will quickly become an important part
of the iOS ecosystem.

In this post, I'm going to do a quick introduction of these new APIs, as well as take
you through the creation of a standalone iMessage app extension. At the end of this
post, you'll have created an app extension that lives inside iMessage, fetches post
from Reddit, and allows users to share Reddit posts with one another. I hope this will
introduce you to the possibilities a!orded with these new iMessages APIs.

Downloading Xcode 8
First things first, you'll need to be a part of the Apple Developer program and
download the Xcode 8 beta, available for download in the Apple Developer Center.
(Quick tip: if you open the Xcode 8 xip file and it hangs on the verify step, try running
xattr -d com.apple.quarantine Xcode_8_beta.xip in the terminal.) Go ahead
and install this beta now.

Creating a 'Hello World' Messages Extension
Once you have the beta installed, open it and go to new project. Create a standalone
iMessage extension by going to iOS -> Application -> Messages Application.

These extensions can be released either as a standalone or bundled with your app--
we're going to make a standalone application in this tutorial. Call the app anything
you'd like, maybe something Reddit related since we'll be using that site's API. Before
we jump in, go to your project's build settings. There is a setting there called
ALWAYS_EMBED_SWIFT_STANDARD_LIBRARIES --set this to "Yes". This will make sure
that all the standard Swift objects, like fundamental data types, arrays and
dictionaries, are available in our extension.

Now that you have a new iMessage extension, try running it in the simulator. You'll be
prompted for an app to run--Messages should be selected automatically. Select the
new app drawer button in Messages, and scroll to the right. You should see your
brand new Hello World app extension.

Let's do a quick rundown of what we're looking at. The top half of the screen is
where the familiar blue iMessage bubbles are displayed in a chat. Not a whole lot has
changed up here.

The bottom half of the screen has a number of new elements. First, we have 3 new
buttons next to the message input field. We have a camera icon to access our photo
library, a heart icon to send live drawings, and a new app drawer button.

Tapping this app button brings up a catalog of all installed iMessage extensions. We
can see our new Hello World app, along with several other example sticker packs
here. Users can swipe to the left and right to switch extensions, allowing quick
message insertions from di!erent extensions. The bottom right corner has a small
arrow, which allows users to take an extension into full expanded mode instead of
compact mode.

Project Overview
Now, let's do a quick overview of the files Xcode generated for this new extension.
First, we have the MainInterface.storyboard file. Here, you can see the layout for the
messages view controller, containing a single 'Hello World' label. These storyboards
function exactly as any other storyboard in Xcode. There are no specific extension
components you have to use for Messages extension UI.

Next, open up MessagesViewController.swift. This contains all the logic for our app
extension. You'll notice that this is a new subclass of UIViewController ,
MSMessagesAppViewController . This messages controller has all the same
UIViewController methods with a handful of new methods and properties
attached to it. A quick overview of these new methods:

willBecomeActive(with conversation: MSConversation) : called right
before your extension becomes active. This is the best place to setup your
extension and restore any previous state. The conversation object is important
here--it gives you the participant IDs and selected message, and allows you to
insert messages or media into the user's text field.
didResignActive(with conversation: MSConversation) : opposite of
above method, called right before your extension goes out of focus.
didReceive(_ message: MSMessage, conversation: MSConversation) :
called whenever a message is received. Note that your extension must be in
focus--you will not receive this method if your extension is out of focus.
didStart/CancelSending(_ message: MSMessage, conversation:
MSConversation) : called when messages are sent or canceled. Again, your
app extension must be in focus to receive this.
will/didTransition(to presentationStyle:
MSMessagesAppPresentationStyle) : called when the presentation style is
changed in your app. If needed, this would be a good place to put layout
changes. Also, if your app is in focus in compact mode and a message is
selected, this delegate will be called.
requestPresentationStyle(_ presentationStyle:
MSMessagesAppPresentationStyle) : allows you to switch between the
compact and full screen modes for your extension.
activeConversation: MSConversation : contains the active conversation
when your extension is in focus. As of the first beta, this property is often nil for
me. I've had to store the conversation from willBecomeActive separately to
access the active conversation (note: will try to keep this post up-to-date as
betas become more advanced)
presentationStyle: MSMessagesAppPresentationStyle : either compact,
or expanded
dismiss() : dismisses your extension and brings the keyboard back up.

Creating a Data Fetcher
Now that we have a basic outline of the MSMessagesAppViewController , let's get
into what we'll be building. At the end of this tutorial, you'll have an app extension
that allows a user to browse the top posts in a given subreddit, then share those
posts with an iMessage chat group. Reddit is a good choice for a sample app since it
has a straightforward and free API we can leverage. Let's start by creating a service
for interacting with this Reddit API. Go ahead and create a plain swift object called
RedditAPI.swift. At the top of this file, let's create a struct for storing Reddit posts. It
should look something like the struct below. If you want, add additional attributes
found in the Reddit API--I'm going to keep this post simple.

struct Post {
 var title: String?
 var score: NSNumber?
 var url: String?
 var domain: String?
}

Below that struct, let's make a new class for our Reddit API. Create a constant in this
class containing the Reddit API link (I'm using /r/programming here)

class RedditAPI {
 static let REDDIT_API_URL = "https://www.reddit.com/r/programming.json"
}

Next, let's add a single function to this RedditAPI class that fetches Reddit posts
and takes a completion closure. That closure should accept an array of Reddit post
objects. The signature should look something like this: class func
getTopStories(_ completionBlock: ((results: ![Post]) -> Void))

In this function, we're going to create a request data task for the subreddit. We will
need to get the default URLSession, then run a data task in that session. The outline
should look like this:

class func getTopStories(_ completionBlock: ((results: ![Post]) -> Void)){
 let defaultSession = URLSession(configuration: URLSessionConfiguration.default
())
 defaultSession.dataTask(with: URL(string: REDDIT_API_URL)!) { (data, response,
error) in
}

Now, inside that data task, lets parse our JSON into Post objects. The code for this
parsing is below:

defaultSession.dataTask(with: URL(string: REDDIT_API_URL)!) { (data, response, erro
r) in
 guard let sData = data else { return }
 do {
 let json = try JSONSerialization.jsonObject(with: sData, options: .mutabl
eContainers)
 guard let wrapper = json!["data"] as? NSDictionary, let children = wrappe
r!["children"] as? NSArray else { return }
 var posts = [Post]()
 for child in children {
 guard let childDict = child as? NSDictionary, post = childDict!["dat
a"] as? NSDictionary else { continue }
 var redditObject = Post()
 if let score = post!["score"] as? NSNumber {
 redditObject.score = score
 }
 if let title = post!["title"] as? NSString {
 redditObject.title = String(title)
 }
 if let url = post!["url"] as? NSString {
 redditObject.url = String(url)
 }
 if let domain = post!["domain"] as? NSString {
 redditObject.domain = String(domain)
 }
 posts.append(redditObject)
 }
 completionBlock(results: posts)
 } catch {
 print(error)
 }
}.resume()

Creating the Extension Interface
Great, now we should be able to get top stories from our
MSMessagesViewController . Let's go ahead and lay out what our extension will
look like. Open up MainInterface.storyboard and delete the default view inside
Messages View Controller. Drag in a table view and make sure the view outlet is
automatically set in the storyboard. Drag in a prototype table view cell--this where
we'll lay out the post cell displayed to the user. Add in 3 labels to this prototype cell
and arrange them somewhat like the picture seen below. Feel free to configure the
look of the cell however you want. The only change you must make for these labels
is to set the number of lines on the title label to 0.

Now, let's create a subclass of UITableViewCell for that storyboard prototype.
Create a new Cocoa class called PostTableViewCell , subclassed from
UITableViewCell . Open this new subclass and the storyboard in the assistant
editor. To create outlets, control-click on each label and drag into the class. It should
look something like this when you're done:

Now, in the storyboard, set the prototype cell class type to PostTableViewCell .
Also, set a reuse identifier for this cell. I used "post".

While we're in the storyboard, set the MessagesViewController as both the data
source and delegate of the tableview. Also, open up MessagesViewController
create an outlet to the table view we just configured in the storyboard. You should
end up with a line like @IBOutlet var tableView: UITableView! in
MessagesViewController .

Linking the Data Fetcher and View Controller
OK, all done with the storyboard now. Let's head back to MessagesViewController
to build out the logic of our extension. We need to add two new properties to this
class: one to hold the Post objects and one to hold the MSConversation we
receive in willBecomeActive . (Note: as of beta 1, the activeConveration variable
in MSMessagesAppViewController is often unset. That's why we'll be storing this
MSConversation separately.)

var posts: ![Post]?
var savedConversation: MSConversation?

Then, go ahead and set that savedConversation object in willBecomeActive

Now, let's work on our viewDidLoad method. I'll give the code now and then step
through it:

override func viewDidLoad() {
 super.viewDidLoad()
 tableView.estimatedRowHeight = 100.0
 tableView.rowHeight = UITableViewAutomaticDimension
 RedditAPI.getTopStories { ![weak self] (results) in
 self?.posts = results
 self?.tableView.reloadData()
 }
 }

First, we're going to give our tableView an estimated cell height and tell it to size the
cells dynamically. Then, we call our RedditAPI function to get the top stories. When
this returns, we set our posts array and reload the table data.

Configuring the Table View
Next, let's build out our table view delegate methods. I like to utilize class extensions
whenever possible--they keep classes clean and easy to follow. Go ahead and
declare this extension in the class:

extension MessagesViewController: UITableViewDataSource {
 func tableView(_ tableView: UITableView, numberOfRowsInSection section: Int) -
> Int {
 return posts?.count ?? 0
 }
}

Great, now we are informing the table how many cells to create. We just need to
create and populate these cells, and we should be in good shape. Add this method
to the data source delegate:

func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) -> UITa
bleViewCell {
 let tvc = tableView.dequeueReusableCell(withIdentifier: "post") as! PostTableV
iewCell
 if let post = posts?![indexPath.row] {
 tvc.title.text = post.title ?? "No Title"
 if let score = post.score {
 tvc.scoreLabel.text = "score: \(score)"
 }
 tvc.urlLabel.text = post.domain ?? "No URL"
 }
 return tvc
}

If you run the extension now, you should see a table view with the top Reddit posts
from a given subreddit!

Creating and Inserting Messages
To enable user interaction with this table, we'll need to add another extension to our
message view controller. Below the data source delegate, go ahead and add a table
view delegate extension:

extension MessagesViewController: UITableViewDelegate {
 func tableView(_ tableView: UITableView, didSelectRowAt indexPath: IndexPath) {
 // cell selection code here
 }
}

In this function, we're going to create a new message with the post information and
insert it into the user's iMessage input field.

func tableView(_ tableView: UITableView, didSelecRowAt indexPath: IndexPath) {
 guard let post = posts?[indexPath.row] else { return }
 let message = MSMessage()
 let layout = MSMessageTemplateLayout()
 layout.caption = post.title
 if let score = post.score {
 layout.subcaption = "\(score)"
 }
 layout.trailingSubcaption = post.domain
 if let postUrl = post.url, url = URL(string: postUrl) {
 message.url = url
 }
 message.layout = layout
 savedConversation?.insert(message, localizedChangeDescription: "Reddit Post",
completionHandler: nil)
}

Let's step through this code. First, we find the post that the user has selected. Then,
we create a new message and layout object to go with it. You can see the
breakdown of a MSMessageTemplateLayout below:

The MSMessageTemplateLayout gives us a number of layout elements to work with.
We can have an image, audio, or video object, along with a title, subtitle, captions
and subcaptions. We'll only use a portion of these elements to display the post title,
score, and URL.

With this MSMessageTemplateLayout set up, we then attach it to our MSMessage
object. Now, we can insert the message into the conversation. We call
conversation.insert() to put the object in the user's iMessage input field.

conversation.insert() is a pretty simple function--it takes an MSMessage, along
with a completion handler, and inserts the message into the user's input field. This
completion handler should accept an NSError optional. If there was an error
inserting the message, then an NSError object will be given to the completion
handler. Otherwise, the error optional will be nil. Since we aren't doing any real error
checking and there are no additional actions we need to take after inserting a
message, we can skip this handler.

Easy enough! If you run the app, you should be able to see the following:

Adding Message Interaction
Let's add in some code that will allow us to interact with posted messages. When a
user clicks one of our messages, let's open up a SFSafariViewController to
display it. We'll need to implement this in two locations: willTransition and
willBecomeActive . We need to use both of these methods because either one
could be called. If our extension is inactive when the user selects a message, then
willBecomeActive will be called. If the extension is active when the message is
tapped, then the user is in compact mode and willTransition is called.

Let's first go to the top of our MessagesViewController and add a new property for
this view controller: var safariViewController: SFSafariViewController? .
Then, let's go to willBecomeActive and add in this logic:

override func willBecomeActive(with conversation: MSConversation) {
 savedConversation = conversation
 safariViewController?.dismiss(animated: true, completion: nil)
 if let url = conversation.selectedMessage?.url {
 safariViewController = SFSafariViewController(url: url)
 present(safariViewController!, animated: true, completion: nil)
 }
}

First, we save the conversation for later so we can insert messages. Then, we dismiss
the Safari view controller in case it's already presented. We check the conversation
to see if we have a selected message with a URL object attached to it. Assuming we
do, we create a new Safari view controller and then show it. Now let's look at the
code for willTransition .

override func willTransition(to presentationStyle: MSMessagesAppPresentationStyle)
{
 guard presentationStyle == .expanded else { return }
 if let message = activeConversation?.selectedMessage, url = message.url {
 safariViewController = SFSafariViewController(url: url)
 present(safariViewController!, animated: true, completion: nil)
 }
}

First, let's check the presentation style. If the new style is compact, that means the
user was in the expanded mode and then collapsed the extension. So, we'll just
return in that case. Then, we do exactly the same thing we did in
willBecomeActive : we check for an activeConversation selectedMessage
URL, and if it is present, we show it in a Safari view controller. That's it! When you
build and run the code, you should now be able to select posted messages to view
the link in our extension.

There are many opportunities for further functionality here. You could attach images
to the messages in MSMessageTemplateLayout , add in proper error checking and
handling, write additional Reddit browsing functionality, or even link this app
extension with an existing full iOS application. I hope you enjoyed this quick tutorial
and can't wait to see what's built using iMessage extensions!

About the Author
Will Emmanuel is a consultant based in Washington DC. He works in
CapTech’s Service Integration practice area, and specializes in iOS
development and cloud technologies.

CapTechCapTech LocationsLocations

Services Expertise Insights Careers About Us Contact !

0%

 

10%

 

20%

 

30%

 

40%

 

50%

 

60%

 

70%

 

80%

 

90%

1/22/22, 10:44 PM
Page 1 of 1

