DynamoDB Design Patterns

Intro to Dynamo

Dynamo is a managed, scalable, NoSQL key-value, wide-column database
managed: Dynamo exposes APIs and handles the rest

scalable: can handle up to 40k RPS; scales up and down with demand
NoSQL: not a relational database

key-value: think distributed hash table

wide-column: names / formats of item attributes varies from row-to-row

Why Dynamo?

Highly available and scalable
Strict query patterns guard against operations that won't scale

Pay only for the capacity you need
Tightly integrated with AWS (IAM, CloudWatch, CloudFormation)

How It Works

e A Dynamo table is stored on a collection of nodes (partitions)

e Each table has a partition key and optional sort key, which uniquely
identify all items in table

e Partition key decides which node owns the record

e Sort key determines how records are organized within a node

e Eachitem is collection of attributes, which can be scalar (string, number,
binary, boolean) or complex types (list, map, set)

How It Works

Client

Hash partition key to
find owning partition
Put 3 Request
ltem Router

- Async replication”™ """ """ T T T T T !
: Y
i 3 Partition 1 Partition 1
Faniion:1 Secondary A Secondary B
Synchronous Replication
= Partition 2 Partition 2
e i Secondary A Secondary B
- Partition 3 Partition 3
Eriion 3 Secondary A Secondary B

Choosing Partition and Sort Keys

- What bad NoSQL looks like ...

relnvient

AWS

re: INvent

Choosing Partition and Sort Keys

e Key selection drives access patterns

e Partition key must be high cardinality to avoid hot partitions
o Good: GUID, Customerld
o Bad: Status, Boolean
e Sort key can be used for ordering and modeling 1:n and n:n
relationships

o Relationships modeled with composite keys
o Order can be maintained with timestamps (updated_at) or sortable GUIDs, e.g. KSUID

Indexing

e Global secondary indexes (GSI) allow you to define a new partition key

and sort key on the table
o Enables new “views” on a table
o RCU/WCU must be at least equal to table, or throttling may happen
oGSl are only eventually consistent
e Local secondary indexes (LSI) allow you to define a new sort key on

existing table partition key
o Reorganizes data in a single partition. Imposes a 10 GB limit per hash key
o Strongly consistent, as opposed to GSI

Consistency

Writes always go to the owning node and are consistent
Eventually consistent reads go to any partition

Strongly consistent reads go to owning partition and cost 2x
Prefer eventual consistency when possible

Only table partition key / sort key and local secondary indexes can
provide full read consistency

TransactionWriteltems / TransactionGetltems can provide ACID
compliance

Dynamo & CAP Theorem

o All distributed data stores can Visual Guide to NoSQL Systems

only provide 2 of 3 g -
e (Consistency Data Modets | Key-Value
i ili sy Column-Oriented/Tabular
e Availability and wete A Document Oriented
e Partition Tolerance

e Dynamo by default provides

availability and partition =
tolerance RDBMSs Aster Dt Oyamo Cassendra

e Using strong Posigres. Verka Tokyo Cabine Cowth0B
consistency/transactions | o R .
trades availability for

consistency

=

Partition Tolerance:
Tn

Consistency CcP

2 BigTable MongoDB Berkeley DB
Hypertable Terrastore MemcacheDB ne
Hbase Scalaris Redis

Streams

e Provides a time-ordered sequence of item-level changes on a table
e Backed by Kinesis stream; out of the path of table requests
e Great for extending a Dynamo table with reactive functionality

Note on Capacity

Billed by read capacity units (RCU) and write capacity units (WCU)
Either on demand or provisioned modes

Tip: Until your Dynamo workload is known, use on demand

Cost of over-provisioning will likely exceed on demand costs

Limits

Up to 40,000 RCU/WCU per table
Max partition key size 2048 bytes
Max sort key size is 1024 bytes
Max 400KB item size

Only 1MB of table data scanned per query before filters applied
Single partition can only have 3000 RCU / 1000 WCU

o In other words, a key item cannot be written to > 1000 WCU
Local secondary index can only contain 10GB of data per partition key

20 GSls per table
e 5 LSIs per table

Single Tahle Design

Different entities can & should live in the same Dynamo table
o 1 table per entity (e.g. Users table, Roles table, Org table) is often an antipattern
o Attempting to join across Dynamo tables can kill performance

Solution: “pre-join” records of different types into a single table
Partition keys allow us to specify “item collections”

Sort keys allow us to define relationships between items

GSls / LSIs give us additional querying flexibility

Dynamo Patterns

Single Tahle Design Example

e Usecase: modeling simple e-commerce site
e Entities: User, Order, Product, Inventory

 PrimaryKey ' 1
— sy Attributes |
|

1 #PROFILE#alexdebrie . = . .
alexdebrie Alex DeBrie alexdebrie1@gmail.com 03/23/2018 {"Home":{"StreetAddress":"1111 1st St","State":"Nebr.
ORDER#Se7z7zpy Usermame Orded Status CreatedAt Address
. alexdebrie 5e7272b7 PLACED 04/21/2019 {"StreetAddress":"1111 1st St","State":"Nebraska","C¢
|Foeislecetre Username Orderld Staws CreatedAt Address

ORDER#42ef295e -

alexdebrie 42ef295e PLACED 04/25/2019 {"StreetAddress":"1111 1st St","State":"Nebraska","C¢
ORDER#ze7apecc Usermame Orded Status CreatedAt Address
alexdebrie 2e7abecc SHIPPED 12/25/2018 {"StreetAddress":"1111 1st St","State":"Nebraska","C¢
4PROFILE#nedotark 0BOHRAMS L i Emall N CreatedAt I Addresses N
nedstark Eddard Stark lord@winterfell.com 02/27/2016 {"Home":{"StreetAddress":"1234 2nd Ave","City":"Wir
USER#nedstark ORDER#2easidee SSHAMEN Orderial I Statis I Createdat N Address I——
nedstark 2eaeldee SHIPPED 01/15/2019 {"StreetAddress™"Suite 200, Red Keep", City":"King's L
R e eeena—" T " e ——————

nedstark f4f80a91 PLACED 05/12/2019 {"StreetAddress":"Suite 200, Red Keep", City":"King's L

Scan: [Table] AmazonExample: PK, SK A

[Table] AmazonExample: PK, SK A

© Add filter

Start search

SK

PK .
USER#will
USER#will
USER#will
PRODUCT#1
PRODUCT#1
PRODUCT#1
USER#jdoe

USER#jdoe

USER#will
ORDER#1
ORDER#2
INVENTORY#DCA
INVENTORY#SEA
PRODUCT#1
ORDER#1

USER#jdoe

Address @ -

{"office": "DCA15", "address": "17...

Description

Office Chair

Viewing 1 to 8 items

~ Name v

Chair

Y

Query: [Table] AmazonExample: PK, SK A

Viewing 1 to 1 item:
[Table] AmazonExample: PK, SK A
key
© Add filter
Sort ® Ascending ® Descending
Attributes © All ® Projected
PK v | SK ~ Address v
USER#will USER#will

{"office": "DCA15", "address": "1775 Belle St", "city": "Arlington”, "state": ...

Query: [Table] AmazonExample: PK, SK A Viewing 1 to 3 items

[Table] AmazonExample: PK, SK A

key

© Add filter

Sort ® Ascending ® Descending

Attributes © All ® Projected

Start search

PK ~ SK ~ Address @ 4 ltems
USER#will USER#will {"office": "DCA15", "ad...
USER#will ORDER#1 [{"M":{"Id": {"S": "PRODUCT#1" }, "Name" : { "S

USER#will ORDER#2 [{"M":{"Id": {"S": "PRODUCT#1" }, "Name" : { "S

Query: [Table] AmazonExample: PK, SK A Viewing 1 to 3 iter

[Table] AmazonExample: PK, SK A

key

© Add filter

Sort ® Ascending ® Descending

Attributes © All ® Projected

Start search

PK + SK ~ | Description ~ Name * Quantity v
PRODUCT#1 INVENTORY#DCA 10
PRODUCT#1 INVENTORY#SEA 2

PRODUCT#1 PRODUCT#1 Office Chair Chair

Single Tahle Design Tips

e Define access patterns up-front
Don’t lock partition key and sort key into one usecase
e Attempt to de-normalize data where possible to reduce number of

qgueries
e Leverage sortable IDs to maintain order
e Tryto keep partition and sort key identifiers short to prevent hitting size

limits

Uniqueness Constraints on Multiple Attributes

e Uniqueness constraints can be added with new entity types
e Example: enforcing uniqueness on both email and user ID attribute

e C(Create write transaction
o Item 1 {PK: “USER#3921", SK: “USER#3921"}
o Item 2 {PK: "EMAIL#will@gmail.com”, SK: “EMAIL#will@gmail.com”}
o Conditional check on neither existing

e |If either exists, the transaction fails

Avoiding Hot Keys

e Example: writing many votes to a candidate record
e To avoid high WCU to one item, shard the item among many records, and
compute an aggregate count via an async process

b

Voter

Updateltem: “CandidateA_" + rand(0, 10)
ADD 1 to Votes

= . b
| ®) | [®] O
(e o =L of (1]
H- o o ABOCEEREAS O andidate 6_4 K Ca te B_8
Jedate A HE e
=g oies, B crsewss B
mO =5 s -
Bl oaaens e '
andidate A_2 B0 e | |® [[
(1] =] HE EHE
\ Candidate A_E Candidate A 8 Votes Table Canciclate B_2 Candhdate B E)

Zlnvent 2 A i B AL aws
)

Maintaining ltem History

e Using version tag as sort key allows
maintaining of write history

e Use the following write pattern:

o Fetchitem ID = X, version = v0

o In write transaction, 3 Maintaining Version History

o Set previous v0O as new vX item -3 Transaction

o Update attributes on v0 e
e V0 always contains latest record

AWS

reInvent

vO . N Overwrite vO Item to

Commit changes
vi : &

v2 . — |ltem versions
v3

(Many more item partitions)
e Invent

1

AWS

re: INvent

Aggregation with Streams

Application

&1

Dynamo Table 1 Stream Processing Lambda

Dynamo Table 2..n

Application

e Read updates from stream, and push metadata / aggregations back to Dynamo
e Example: on new Order item, update User record openOrders += 1

Full Text Search with Streams

36—

Dynamo Table Stream Processing Lambda

Application

Elasticsearch
Cluster

e Transform and push items into ElasticSearch to enable full-text search
e Maintains Dynamo as source of truth, but enables more powerful querying
options

Load to Warehouse with Streams

e A =

Dynamo Table Stream Processing Lambda

Kinesis Firehose

Redshift
Cluster

e Push items into a data warehouse (e.g. S3, Redshift) to enable flexible B
querying

Sctheduling with ltem TTL

Application

| __Insert record with
TTL = fire time

[Bn TTL
[Trigg

Dynamo Table
With TTL

expiration
ers stream
delate

ﬂ |:|) _Lambdg nc_)tiﬁes >
‘ | U application

Stream

Processing Lambda,
Deletes Only

Application

e Documents in Dynamo can define a time-to-live attribute. This is helpful for caching,
leases, and scheduling

e (Can schedule events by pushing an item with a TTL at desired fire date

e Listen for delete events, and notify application

e TTLis implemented as a background scanning process on each partition. Depending on
table usage, delete could take as long as 48h to process. Typically is much shorter

Distributed Locking

e Quickly build distributed lock with
open-source Amazon DynamoDB Lock
Client

e Use cases: making sure two workers
don't operate on same entity, leader
election

e Onlyrequires a Dynamo DB table with
partition key “key”

e Supports heartbeats, lease duration,
blocking / non-blocking lock acquisitions

3
AcquireLock(key = Moe, RVN = UUID,,
RVN, .= null, lease for 10 seconds) P
AcquireLock(key = Moe, RVN = UUID,,
a RVN = UUID, RVN,,.., = null, lease for 10 seconds)
Lease Dumtion:= 10s Lock not granted because RVN = UUID,

. _ leased the lock for 10 seconds

> Waited 10 seconds for lock to
'SendHeartBeat(key = Moe, RVN = UUID,, ’l _ @ %

expire but A’s heartbeat renewed
RVN,.., = UUID,, lease for 10 seconds) _ |AcquireLock(key = Moe, RVN = UUID,,

EC2 instance A

>\ RVN = UUID, RVN,., = UUID; lease for 10 seconds) rf

il L Duration = 10 RVN |s sll\l UUID, in 10 seconds
Ree MmN~ . - Lock not granted because RVN = UUID,

. _ leased the lock for 10 seconds

(1] (|> Waited 10 seconds for lock to
expire and A did not heartbeat

Host A dies
and does not
renew its lock

on Moe, so the
latest RVN in
the lock table

AcquireLock(key = Moe, RVN = UUID;,

I 'RN,... - UUID,, lease for 10 seconds)
1T if RVIL s still UUID, in 10 seconds

N -
Lease Duration = 10s

is UUID3. _ EC2instance B
bk VPC subnet 1 / . \ VPC subnet 2
&\ " Auto Scaling group

Optimistic Locking

e Java library has @DynamoDBVersionAttribute annotation, which sets up
optimistic item locking

e Each item putis given a conditional check, where current version =
expected version

e Write will reject if versions do not match

e Make sure to handle ConditionalCheckFailed runtime exceptions

Serverless Dynamo Frontends

e AWS API Gateway can add REST endpoints on top of Dynamo tables using

service proxies

No-code solution

APIs can be versioned

SIGv4 Authentication

E.g. map route GET /companies/Amazon/employees/1 to query PK: Amazon, SK: 1;
transform and return result

e AWS AppSync can add GraphQL operations on top of Dynamo tables

O

o O O

From Millisecond to Microsecond

e Dynamo Accelerator (DAX) is fully managed caching solution which brings

latencies down to microseconds
o In-memory cache of items and queries
o Only supports eventually consistent reads
e Global tables can replicate Dynamo tables cross-region
o Multi-master replicas
o Writes propagated cross-region within a second
o Last-writer-wins for cross-region write conflicts

Handling Migrations

e If possible, handle new attribute defaults in business logic

e For small backfills / migrations, scripts are preferable

o Parallel scans possible with TotalSegments / SegmentNumber arguments
e For large backfills / migrations, use EMR

o AWS EMR has built in Dynamo adapters

o Load a Dynamo table into Hive, make change, then load back to Dynamo
o Make sure to set a % of capacity to use during job

Resources

e Relnvent 2018 DAT401 - Advanced Design Patterns for DynamoDB
https://youtu.be/HaEPXoXVf2k

e The DynamoDB Book by Alex Debrie https://www.dynamodbbook.com

e Advanced Design Patterns for Amazon DynamoDB by National Australia
Bank https://link.medium.com/ypcCdKt6Kbb

e Dynamo Docs https://docs.aws.amazon.com/dynamodb/index.html

