
DynamoDB Design Patterns

Intro to Dynamo
Dynamo is a managed, scalable, NoSQL key-value, wide-column database

managed: Dynamo exposes APIs and handles the rest

scalable: can handle up to 40k RPS; scales up and down with demand

NoSQL: not a relational database

key-value: think distributed hash table

wide-column: names / formats of item attributes varies from row-to-row

Why Dynamo?
● Highly available and scalable
● Strict query patterns guard against operations that won’t scale
● Pay only for the capacity you need
● Tightly integrated with AWS (IAM, CloudWatch, CloudFormation)

How It Works
● A Dynamo table is stored on a collection of nodes (partitions)
● Each table has a partition key and optional sort key, which uniquely

identify all items in table
● Partition key decides which node owns the record
● Sort key determines how records are organized within a node
● Each item is collection of attributes, which can be scalar (string, number,

binary, boolean) or complex types (list, map, set)

How It Works

Choosing Partition and Sort Keys

Choosing Partition and Sort Keys
● Key selection drives access patterns
● Partition key must be high cardinality to avoid hot partitions

○ Good: GUID, CustomerId
○ Bad: Status, Boolean

● Sort key can be used for ordering and modeling 1:n and n:n
relationships

○ Relationships modeled with composite keys
○ Order can be maintained with timestamps (updated_at) or sortable GUIDs, e.g. KSUID

Indexing
● Global secondary indexes (GSI) allow you to define a new partition key

and sort key on the table
○ Enables new “views” on a table
○ RCU/WCU must be at least equal to table, or throttling may happen
○ GSI are only eventually consistent

● Local secondary indexes (LSI) allow you to define a new sort key on
existing table partition key

○ Reorganizes data in a single partition. Imposes a 10 GB limit per hash key
○ Strongly consistent, as opposed to GSI

Consistency
● Writes always go to the owning node and are consistent
● Eventually consistent reads go to any partition
● Strongly consistent reads go to owning partition and cost 2x
● Prefer eventual consistency when possible
● Only table partition key / sort key and local secondary indexes can

provide full read consistency
● TransactionWriteItems / TransactionGetItems can provide ACID

compliance

Dynamo & CAP Theorem
● All distributed data stores can

only provide 2 of 3
● Consistency
● Availability
● Partition Tolerance

● Dynamo by default provides
availability and partition
tolerance

● Using strong
consistency/transactions
trades availability for
consistency

Streams
● Provides a time-ordered sequence of item-level changes on a table
● Backed by Kinesis stream; out of the path of table requests
● Great for extending a Dynamo table with reactive functionality

Note on Capacity
● Billed by read capacity units (RCU) and write capacity units (WCU)
● Either on demand or provisioned modes
● Tip: Until your Dynamo workload is known, use on demand
● Cost of over-provisioning will likely exceed on demand costs

Limits
● Up to 40,000 RCU/WCU per table
● Max partition key size 2048 bytes
● Max sort key size is 1024 bytes
● Max 400KB item size
● Only 1MB of table data scanned per query before filters applied
● Single partition can only have 3000 RCU / 1000 WCU

○ In other words, a key item cannot be written to > 1000 WCU
● Local secondary index can only contain 10GB of data per partition key
● 20 GSIs per table
● 5 LSIs per table

Single Table Design
● Different entities can & should live in the same Dynamo table

○ 1 table per entity (e.g. Users table, Roles table, Org table) is often an antipattern
○ Attempting to join across Dynamo tables can kill performance

● Solution: “pre-join” records of different types into a single table
● Partition keys allow us to specify “item collections”
● Sort keys allow us to define relationships between items
● GSIs / LSIs give us additional querying flexibility

Dynamo Patterns

Dynamo Patterns

Single Table Design Example
● Usecase: modeling simple e-commerce site
● Entities: User, Order, Product, Inventory

Single Table Design Tips
● Define access patterns up-front
● Don’t lock partition key and sort key into one usecase
● Attempt to de-normalize data where possible to reduce number of

queries
● Leverage sortable IDs to maintain order
● Try to keep partition and sort key identifiers short to prevent hitting size

limits

Uniqueness Constraints on Multiple Attributes
● Uniqueness constraints can be added with new entity types
● Example: enforcing uniqueness on both email and user ID attribute
● Create write transaction

○ Item 1 {PK: “USER#3921”, SK: “USER#3921”}
○ Item 2 {PK: “EMAIL#will@gmail.com”, SK: “EMAIL#will@gmail.com”}
○ Conditional check on neither existing

● If either exists, the transaction fails

Avoiding Hot Keys
● Example: writing many votes to a candidate record
● To avoid high WCU to one item, shard the item among many records, and

compute an aggregate count via an async process

Maintaining Item History
● Using version tag as sort key allows

maintaining of write history
● Use the following write pattern:

○ Fetch item ID = X, version = v0
○ In write transaction,
○ Set previous v0 as new vX item
○ Update attributes on v0

● v0 always contains latest record

Aggregation with Streams

● Read updates from stream, and push metadata / aggregations back to Dynamo
● Example: on new Order item, update User record openOrders += 1

Full Text Search with Streams

● Transform and push items into ElasticSearch to enable full-text search
● Maintains Dynamo as source of truth, but enables more powerful querying

options

Load to Warehouse with Streams

● Push items into a data warehouse (e.g. S3, Redshift) to enable flexible BI
querying

Scheduling with Item TTL

● Documents in Dynamo can define a time-to-live attribute. This is helpful for caching,
leases, and scheduling

● Can schedule events by pushing an item with a TTL at desired fire date
● Listen for delete events, and notify application
● TTL is implemented as a background scanning process on each partition. Depending on

table usage, delete could take as long as 48h to process. Typically is much shorter

Distributed Locking
● Quickly build distributed lock with

open-source Amazon DynamoDB Lock
Client

● Use cases: making sure two workers
don’t operate on same entity, leader
election

● Only requires a Dynamo DB table with
partition key “key”

● Supports heartbeats, lease duration,
blocking / non-blocking lock acquisitions

Optimistic Locking
● Java library has @DynamoDBVersionAttribute annotation, which sets up

optimistic item locking
● Each item put is given a conditional check, where current version =

expected version
● Write will reject if versions do not match
● Make sure to handle ConditionalCheckFailed runtime exceptions

Serverless Dynamo Frontends
● AWS API Gateway can add REST endpoints on top of Dynamo tables using

service proxies
○ No-code solution
○ APIs can be versioned
○ SIGv4 Authentication
○ E.g. map route GET /companies/Amazon/employees/1 to query PK: Amazon, SK: 1;

transform and return result
● AWS AppSync can add GraphQL operations on top of Dynamo tables

From Millisecond to Microsecond
● Dynamo Accelerator (DAX) is fully managed caching solution which brings

latencies down to microseconds
○ In-memory cache of items and queries
○ Only supports eventually consistent reads

● Global tables can replicate Dynamo tables cross-region
○ Multi-master replicas
○ Writes propagated cross-region within a second
○ Last-writer-wins for cross-region write conflicts

Handling Migrations
● If possible, handle new attribute defaults in business logic
● For small backfills / migrations, scripts are preferable

○ Parallel scans possible with TotalSegments / SegmentNumber arguments
● For large backfills / migrations, use EMR

○ AWS EMR has built in Dynamo adapters
○ Load a Dynamo table into Hive, make change, then load back to Dynamo
○ Make sure to set a % of capacity to use during job

Resources
● ReInvent 2018 DAT401 - Advanced Design Patterns for DynamoDB

https://youtu.be/HaEPXoXVf2k
● The DynamoDB Book by Alex Debrie https://www.dynamodbbook.com
● Advanced Design Patterns for Amazon DynamoDB by National Australia

Bank https://link.medium.com/ypcCdKt6Kbb
● Dynamo Docs https://docs.aws.amazon.com/dynamodb/index.html

