
DynamoDB Design Patterns



Intro to Dynamo
Dynamo is a managed, scalable, NoSQL key-value, wide-column database

managed: Dynamo exposes APIs and handles the rest

scalable: can handle up to 40k RPS; scales up and down with demand

NoSQL: not a relational database

key-value: think distributed hash table

wide-column: names / formats of item attributes varies from row-to-row



Why Dynamo?
● Highly available and scalable
● Strict query patterns guard against operations that won’t scale
● Pay only for the capacity you need 
● Tightly integrated with AWS (IAM, CloudWatch, CloudFormation)



How It Works
● A Dynamo table is stored on a collection of nodes (partitions)
● Each table has a partition key and optional sort key, which uniquely 

identify all items in table
● Partition key decides which node owns the record
● Sort key determines how records are organized within a node
● Each item is collection of attributes, which can be scalar (string, number, 

binary, boolean) or complex types (list, map, set)
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Choosing Partition and Sort Keys



Choosing Partition and Sort Keys
● Key selection drives access patterns
● Partition key must be high cardinality to avoid hot partitions

○ Good: GUID, CustomerId
○ Bad: Status, Boolean

● Sort key can be used for ordering and modeling 1:n and n:n 
relationships

○ Relationships modeled with composite keys
○ Order can be maintained with timestamps (updated_at) or sortable GUIDs, e.g. KSUID



Indexing
● Global secondary indexes (GSI) allow you to define a new partition key 

and sort key on the table
○ Enables new “views” on a table
○ RCU/WCU must be at least equal to table, or throttling may happen
○ GSI are only eventually consistent

● Local secondary indexes (LSI) allow you to define a new sort key on 
existing table partition key

○ Reorganizes data in a single partition. Imposes a 10 GB limit per hash key
○ Strongly consistent, as opposed to GSI



Consistency
● Writes always go to the owning node and are consistent
● Eventually consistent reads go to any partition 
● Strongly consistent reads go to owning partition and cost 2x
● Prefer eventual consistency when possible
● Only table partition key / sort key and local secondary indexes can 

provide full read consistency 
● TransactionWriteItems / TransactionGetItems can provide ACID 

compliance



Dynamo & CAP Theorem
● All distributed data stores can 

only provide 2 of 3
● Consistency
● Availability 
● Partition Tolerance

● Dynamo by default provides 
availability and partition 
tolerance

● Using strong 
consistency/transactions 
trades availability for 
consistency



Streams
● Provides a time-ordered sequence of item-level changes on a table
● Backed by Kinesis stream; out of the path of table requests
● Great for extending a Dynamo table with reactive functionality 



Note on Capacity
● Billed by read capacity units (RCU) and write capacity units (WCU)
● Either on demand or provisioned modes
● Tip: Until your Dynamo workload is known, use on demand 
● Cost of over-provisioning will likely exceed on demand costs



Limits
● Up to 40,000 RCU/WCU per table
● Max partition key size 2048 bytes
● Max sort key size is 1024 bytes
● Max 400KB item size
● Only 1MB of table data scanned per query before filters applied
● Single partition can only have 3000 RCU / 1000 WCU

○ In other words, a key item cannot be written to > 1000 WCU
● Local secondary index can only contain 10GB of data per partition key
● 20 GSIs per table
● 5 LSIs per table



Single Table Design
● Different entities can & should live in the same Dynamo table

○ 1 table per entity (e.g. Users table, Roles table, Org table) is often an antipattern
○ Attempting to join across Dynamo tables can kill performance

● Solution: “pre-join” records of different types into a single table
● Partition keys allow us to specify “item collections”
● Sort keys allow us to define relationships between items
● GSIs / LSIs give us additional querying flexibility 
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Single Table Design Example
● Usecase: modeling simple e-commerce site
● Entities: User, Order, Product, Inventory











Single Table Design Tips
● Define access patterns up-front 
● Don’t lock partition key and sort key into one usecase
● Attempt to de-normalize data where possible to reduce number of 

queries
● Leverage sortable IDs to maintain order
● Try to keep partition and sort key identifiers short to prevent hitting size 

limits



Uniqueness Constraints on Multiple Attributes
● Uniqueness constraints can be added with new entity types 
● Example: enforcing uniqueness on both email and user ID attribute
● Create write transaction

○ Item 1 {PK: “USER#3921”, SK: “USER#3921”}
○ Item 2 {PK: “EMAIL#will@gmail.com”, SK: “EMAIL#will@gmail.com”}
○ Conditional check on neither existing

● If either exists, the transaction fails



Avoiding Hot Keys
● Example: writing many votes to a candidate record
● To avoid high WCU to one item, shard the item among many records, and 

compute an aggregate count via an async process



Maintaining Item History
● Using version tag as sort key allows 

maintaining of write history
● Use the following write pattern:

○ Fetch item ID = X, version = v0
○ In write transaction,
○ Set previous v0 as new vX item
○ Update attributes on v0

● v0 always contains latest record



Aggregation with Streams

● Read updates from stream, and push metadata / aggregations back to Dynamo 
● Example: on new Order item, update User record openOrders += 1



Full Text Search with Streams

● Transform and push items into ElasticSearch to enable full-text search
● Maintains Dynamo as source of truth, but enables more powerful querying 

options



Load to Warehouse with Streams

● Push items into a data warehouse (e.g. S3, Redshift) to enable flexible BI 
querying



Scheduling with Item TTL

● Documents in Dynamo can define a time-to-live attribute. This is helpful for caching, 
leases, and scheduling

● Can schedule events by pushing an item with a TTL at desired fire date
● Listen for delete events, and notify application 
● TTL is implemented as a background scanning process on each partition. Depending on 

table usage, delete could take as long as 48h to process. Typically is much shorter  



Distributed Locking
● Quickly build distributed lock with 

open-source Amazon DynamoDB Lock 
Client

● Use cases: making sure two workers 
don’t operate on same entity, leader 
election

● Only requires a Dynamo DB table with 
partition key “key”

● Supports heartbeats, lease duration, 
blocking / non-blocking lock acquisitions 



Optimistic Locking
● Java library has @DynamoDBVersionAttribute annotation, which sets up  

optimistic item locking
● Each item put is given a conditional check, where current version = 

expected version
● Write will reject if versions do not match
● Make sure to handle ConditionalCheckFailed runtime exceptions



Serverless Dynamo Frontends
● AWS API Gateway can add REST endpoints on top of Dynamo tables using 

service proxies
○ No-code solution
○ APIs can be versioned
○ SIGv4 Authentication
○ E.g. map route GET /companies/Amazon/employees/1 to query PK: Amazon, SK: 1; 

transform and return result
● AWS AppSync can add GraphQL operations on top of Dynamo tables



From Millisecond to Microsecond
● Dynamo Accelerator (DAX) is fully managed caching solution which brings 

latencies down to microseconds
○ In-memory cache of items and queries
○ Only supports eventually consistent reads

● Global tables can replicate Dynamo tables cross-region
○ Multi-master replicas
○ Writes propagated cross-region within a second
○ Last-writer-wins for cross-region write conflicts



Handling Migrations
● If possible, handle new attribute defaults in business logic
● For small backfills / migrations, scripts are preferable

○ Parallel scans possible with TotalSegments / SegmentNumber arguments
● For large backfills / migrations, use EMR

○ AWS EMR has built in Dynamo adapters
○ Load a Dynamo table into Hive, make change, then load back to Dynamo
○ Make sure to set a % of capacity to use during job



Resources
● ReInvent 2018 DAT401 - Advanced Design Patterns for DynamoDB 

https://youtu.be/HaEPXoXVf2k
● The DynamoDB Book by Alex Debrie https://www.dynamodbbook.com
● Advanced Design Patterns for Amazon DynamoDB by National Australia 

Bank https://link.medium.com/ypcCdKt6Kbb
● Dynamo Docs https://docs.aws.amazon.com/dynamodb/index.html


